
Inr. J. Heat Mu.,., TrunsJk. Vol. 23, pp. 1613-1623 
Pergamon Press Ltd. 1980. Printed in Great Britain. 

A GENERAL ANALYSIS OF MOISTURE MIGRATION 
CAUSED BY TEMPERATURE DIFFERENCES IN 

AN UNSATURATED POROUS MEDIUM 

E. R. G. ECKERT 

Regent’s Professor emeritus, University of Minnesota, 
Department of Mechanical Engineering, Minneapolis, Minnesota, U.S.A. 

and 

M. FAGHRI* 

Department of Mechanical Engineering, Tehran University of Technology, Tehran, Iran 

(Received 20 May 1980) 

Professor Edmond A. Brun was interested in heat and mass transfer in porous media, as one of his wide- 
ranging areas ofconcern. A large number of papers, reports, and theses published by his students on this topic 
was initiated and influenced by him. To one paper he gave his name: E. Brun and B. Le Furo, Application of 
similitude in the mechanics of dispersed media; in Problems ofHydrodynamics and Continuum Mechanics. 
S.Z.A.M., 63-76 (1969) (in English). 

The present contribution is dedicated in his memory. 

Abstract - An analysis was performed which describes the moisture migration in a slab of an unsaturated 
porous material for the condition that the temperature of one surface is suddenly increased to a higher value 
whereas the temperature of the other surface is maintained constant. The two surfaces are assumed 
impermeable to mass flow. The thermodynamic and transport properties occurring in the equations 
describing the temperature and moisture transport are assumed constant. In this way, very general relations 
are obtained for the moisture field as it changes in time. Before dry-out, a dimensionless parameter describing 
the moisture field is a function of equivalent Luikov and Fourier numbers only. The dependence on the 
Luikov number becomes noticeable solely for the early periods and for small values of the Luikov number. 
After the onset of dry-out, the moisture ratio depends in addition on the thermal mass diffusion coefficient. 
The results of the analysis presented in the Figs 1-7, should describe the actual moisture migration with good 
accuracy where the variation of the properties is small in the range of the independent variables occurring in a 

specific situation and they should be useful as a first approximation for other situations as well. 

NOMENCLATURE 

specific heat ; 
vapor diffusion coefficient ; 

see equation (12) ; 
porosity; 
enthalpy ; 
heat of vaporization ; 
mass flux ; 
thermal conductivity; 

moisture diffusion coefficient ; 
thickness of slab ; 
flux of liquid and vapor per unit time and 
area ; 
molecular weight ; 
universal gas constant ; 
temperature; 
absolute temperature; 

vapor mass fraction ; 
moisture content (mass of liquid per mass of 

dry soil); 
coordinate ; 
thermal diffusivity ; 
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PY density; 

4, potential; 

T, time. 

Subscripts 

a, air; 

4 dry soil ; 
4 initial ; 

1, liquid ; 

L, atx=L; 

0, atx=O; 

s, soil ; 
L’, vapor ; 
a, at time T + ;c. 

Dimensionless parameters 

K 
-, Luikov number; 
a, 

%T 
-, Fourier number ; 
L2 

D*(t,, - ti) 

KW, ’ 
thermal mass diffusion parameter ; 

KT - 
L2 ’ 

moisture transfer Fourier number. 
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INTRODUCTION 

COMHINIXI heat and mass transfer with phase change in 

a porous medium is a process which occurs frequently 
in nature as well as in various engineering endeavors. 

Drying and humidification in chemical processes and 
in climate control or movement of moisture in the soil 

are examples. Such processes have, therefore, been 

widely studied by agricultural, civil, chemical, and 

petroleum engineers. 
An analysis of these processes is complicated by 

various factors. The structure of the solid matrix varies 

widely in shape. It may, for instance, be composed of 
cells, fibres or grains. There is, in general, a distribution 

of void sizes and the structures may also be locally 

irregular. Energy transport in such a medium occurs 

by conduction in all of the phases as well as by 
convection with those phases which are able to move. 

Mass transport occurs within the voids of the medium. 

In an unsaturated state these voids are partially filled 
with a liquid, whereas the rest of the voids contains 

some gas. Most frequently, the liquid is water and the 
gas is air. We will, therefore, in the following refer to 

the liquid as water and to the gas as air. Evaporation or 
condensation occurs at the interface between the water 

and the air so that the air is mixed with water vapor. A 

flow of the mixture of air and vapor may be caused by 

external forces, for instance, by an imposed pressure 
difference. The vapor will also move relative to the gas 

by diffusion from regions where the partial pressure of 

the vapor is higher to those where it is lower. The 
partial pressure of vapor at the interface to the liquid 

is determined by the sorption isotherm, which makes it 
dependent on moisture content as well as on tempera- 

ture. The saturation pressure is also different on a 

curved surface from that on a plane one and is 

influenced by the presence of air. The flow of liquid is 

caused by external forces, like imposed pressure differ- 

ences, gravity, and internal forces, like capillary, 

intermolecular and osmotic forces. 

A detailed study of the transport processes occur- 
ring within the solid matrix and in the voids is, 

therefore, very complicated even for a regularly shaped 
matrix and is impossible for the irregular void con- 
figurations existing in general in porous media. The 

normal approach in an analysis is, therefore, to 

consider the media involved as continua. The energy 
and mass fluxes then have to be described by con- 
stitutive equations. The various driving forces in- 
volved make the constitutive equations quite com- 
plicated. The difficulty in handling them is aggravated 
by the fact that the transport properties involved vary 
strongly with the structure of the porous medium, with 
moisture content, and with temperature. An extensive 
literature exists which endeavors to formulate the 
transport processes mathematically. Early work was 
done in the Soviet Union [l] with important basic 
contribution by Luikov [2]. A wide range of transport 
processes in porous media was also studied simul- 
taneously in Germany by Krischer [3]. More recent 

work is referenced in the paper by Eckert and Pfender 

c41. 
Numerous solutions of the transport equations are 

also found in the literature. Only some can be listed 
here [S-11]. The selection is restricted to the problem 

which will be discussed later in this paper. The 
referenced solutions consider certain types of media 

and boundary conditions and provide valuable infor- 
mation for the specific situation. It is, however, difficult 

to obtain from them a general understanding which 
can be used as a guide for conditions for which no 

specific solutions are available. 
This is a situation similar to the one which existed in 

the field of heat transfer at the beginning of this 
century. A considerable number of relations obtained 

from experiments were at that time available for 
specific fluids, temperatures and boundary conditions. 
A systematic understanding of heat transfer processes, 

however, was obtained only when W. Nusselt in- 
troduced an idealized model of a constant property 

fluid. In this way he derived through dimensional 

analysis relations expressing Nusselt numbers as func- 

tions of Reynolds and Prandtl numbers, relations 
which describe heat transfer processes in a very general 
way. Such relations have been accepted by the 

engineering community and are still used widely 
today. They have in the meantime been supplemented 
by specific more accurate information which includes 

the variation of the properties involved. 

It is felt that such general relations describing heat 
and mass transfer for certain classes of porous media 

would be valuable and that they can be obtained by an 
approach similar to the one mentioned above. Such 

relations can then be applied to situations where the 
actual variation of the properties is small in the range 
of independent variables occurring in the specific 

situation and are useful as a first approximation for 
other situations as well. 

The present paper uses this approach for a class of 

heat and mass transfer processes characterized by the 
following specifications. The effect of gravity is neglig- 

ible and there is no mass flow through the boundaries 
of the medium. The porous matrix is of such a nature 

that the saturation pressure at the interface between 
liquid and vapor is a function of temperature only. 

This is, for instance, the case in a granular material 

when only a small number of pores have sizes smaller 

than 1 pm and as long as the moisture content is not 
too small [4]. The pore size is, on the other hand, 
sufficiently small so that the vapor pressure through- 
out any cross-section of the vapor-gas passages 
departs from the saturation pressure at the interface by 
a negligible amount only. The medium is also postu- 
lated to be macroscopically homogeneous and not to 
swell with changing moisture content. 

TRANSPORT EQUATIONS 

The restrictions defining the class of media for this 
study have been mentioned before. The following 
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restrictions will be introduced for the condition under 
which the transport processes occur: 

No mass flow passes the envelope of the porous 
medium. 
The vapor pressure p, is small compared to the 
total pressure p which, therefore, can be approxi- 
mated by the air pressure pa. 
Temperature differences imposed on the medium 
are small so that the total pressure (and the air 
pressure) can be considered constant during the 
transport processes. The influence of a slight 
movement of the air within the voids of the 
material will therefore be neglected and the 
diffusion of vapor in the voids will be described 
by Fick’s equation. 

The conservation equation for energy can then be 
written in the following form 

The various symbols in the equation are defined in the 
list of nomenclature. The term on the left hand side 
describes energy storage in an infinitely small control 
volume. c, denotes the specific heat of the moist 
medium per unit dry mass and pd denotes the dry 
density. The first term on the right hand side describes 
heat flow by conduction. The thermal conductivity k 

has to include heat conduction in the liquid, vapor, and 
air as well as in the solid material. The second term on 
the right hand side describes enthalpy transport with 
the vapor. j, denotes the vapor mass flux and the 
enthalpy of the vapor is expressed as the sum of the 
heat of evaporation h,, and of the sensible heat h, of the 
liquid. The third term on the right hand side describes 
the enthalpy transport with the liquid. jr denotes the 
mass flux of the liquid. 

No net mass flux occurs through the boundaries of 
the porous material ; accordingly j, + j, = 0. The same 
condition holds in the interior of the medium for 
steady state. During the transient period there will be a 
small net mass flux in the interior. Its influence on the 
enthalpy transport will be neglected with the justifi- 
cation that the heat of vaporization h,, is large 
compared to the sensible heat of the liquid h,.“Equation 
(1) then transforms to the following equation when in 
addition the vapor flux j, is expressed by Fick’s 
equation. 

p&E = V(kVt) + V(&D,h,,VW). (2) 

The driving potential in the diffusion equation is 
expressed as a gradient of the mass fraction w of the 
diffusing vapor. D, describes the mass diffusion coef- 
ficient of vapor in the porous matrix. It has to account 
for the fact that only part of the cross-section of the 
medium is available for vapor diffusion and also for the 
tortuosity of the diffusion path. The total density in the 
diffusion equation has been approximated by the air 

density p,,. The cross sections of the passages in the 
porous medium are in general quite small, justifying 
the assumption that the partial pressure of vapor at 
any location is equal to the saturation pressure at the 
local temperature. This pressure is in porous media a 
function of temperature t and moisture content Wand 
is given by the sorption isotherm. At a prescribed 
constant pressure such a relation holds also for the 
vapor mass fraction w 

w =f(W, t). (3) 

The operator VW can therefore be expressed in the 
following way 

The dependence of the saturation pressure pv and 
the saturation mass fraction w on moisture content W 
has various causes. The equilibrium saturation pres- 
sure of a liquid in a dispersed phase is different from 
that in a bulk liquid. This effect can be treated 
thermodynamically. Equation (70) in [ 111 describes 
the relation between the saturation pressure p, and the 
saturation pressure pvo of vapor in contact with its 
bulk liquid phase through a plane interface. The first 
term on the right hand of this equation describes the 
fact that the saturation pressure in a vapor-air mixture 
is different from the saturation pressure in pure vapor. 
This effect, however, is negligibly small as long as the 
total pressure of the mixture is not too far away from 
atmospheric pressure. The most important of the 
effects is that of capillarity described by the second term. 
In a grainy matrix the potential @ in the referenced 
equation has then to be replaced by - (a/p,r,) where 0 
is the surface tension, r,,, is the mean radius of 
curvature, and p, is the density of the liquid. On a 
concave surface, the difference of the saturation pres- 
sure on a plane surface and on a concave surface is 
positive and becomes larger with decreasing radius of 
curvature of the surface. The difference is 10% when 
the mean radius of curvature of the surface is lo-* pm. 
Such small curvatures are expected at very fine porous 
material or at very low moisture content only. Adsorp 
tion effects become important in very thin liquid 
layers comprising only a few molecules. The liquid 
behavior differs in such a layer from a liquid in bulk 
when the layer is 10 molecules or less thick. This means 
that layers of order 10e9 pm are involved, which again 
indicates that the moisture content has to be very 
small. Sorption isotherms which describe these effects, 
for a number of materials are presented on pages 
52-62 of [3]. One finds there that a 10 % reduction of 
the saturation pressure occurs, for instance, for con- 
crete at a moisture content W= 0.02 and that for brick 
the corresponding moisture content is 0.002. The 
second term in equation (4) will, therefore, be dropped 
for the class of porous materials considered in this 
paper. The energy equation (2) can then be transfor- 
med to 



1616 E. R. G. ECKI.KT and M. FAGHHI 

p&; = V(k,Vt) 

in which the soil conductivity k, 

equation 

(5) 

is given by the 

k, = k + ,,D,h,“$. (6) 

This conductivity is the one which is obtained by 
conductivity measurements in a porous medium [4]. 

The conservation equation for moisture can be 
written in the following form 

PdZ = VP.D,VW) + PlV(K$VdJ). (7) 

The equation expresses the fact that the vapor trans- 
ported by diffusion into a volume element of soil and 
the liquid transported by various forces has to be 
stored and increases the moisture content in the 
element. 

The left hand side of the equation should contain a 
term describing the storage of vapor in addition to the 
one describing the storage of liquid. The vapor storage, 
however, is extremely small compared with the liquid 
storage and will be neglected. An upper bound for 
the vapor mass stored per unit volume is 

[f~,@w/WW~7)1. Th e moisture transport in liquid 
form described by the second term on the right hand 
side is written as a function of the gradient of the 
suction potential 4. The moisture diffusivity K, de- 
pends on the parameters describing the porous matrix, 
on the moisture content, and on the temperature. For a 
specific homogeneous soil it is therefore a function of 
W and t. 

@ =f(W, t). (8) 

The dependence on temperature is in general con- 
siderably smaller than the dependence on moisture 
content W and will be neglected. The conservation 
equation then takes on the form 

; = ~+.D~~vr) + V(KVW) (9) 

into which a new moisture diffusivity K has been 
introduced defined by the equation 

CONSTANT PROPERTY SOLUTIONS 

Slab with a stepwise temperature variation 
A slab of thickness L will be considered as a specific 

example. The temperature and moisture content are 
prescribed as initially uniform and the temperature of 
one surface is suddenly increased and kept constant 
whereas the temperature of the other surface is main- 
tained at the original value. The energy equation (5) 

takes on the form when the properties are considered 
constant 

at Pt 
- = a,--_. 
a7 (7.2 

(11) 

With the definition of a thermal mass diffusion coef- 
ficient D*, which is also considered constant. defined 

by 

Dc,, = & D &’ = MJs ape ___ 
Pd s at pSRT at 

the moisture conservation equation reads 

aw -=D*$+K$, 
a7 

The boundary conditions for the problem 

at 7=O:t=ti, W=Wi 

at 7>0, x=0: t=t,, i=O, 

(12) 

(13) 

are 

(14) 

x=L: t=ti, ni=o 

where the specific mass flux ti is given by 

at +__D*-_K!?!! 
dX ax (15) 

It is evident that the energy equation (11) with its 
boundary conditions is independent of the moisture 
field. The equation and its boundary conditions will 
now be made dimensionless by the following change of 
variables 

X 
xc--, 7/c t=_ 

t - ti 

L L2 ’ t, - ti 
(16) 

It is noted that no value for a characteristic time is 
prescribed to the problem. Such a time has, therefore, 
to be formed with a proper combination of other 
prescribed parameters. The energy equation now takes 
on the form 

at a3 
K - ax2 (17) 

The dimensionless boundary conditions are : 

r,=O:t=O 

r,>O,x=O: t=1,x=1: t=o. (18) 

It is observed that neither in the differential equation 
(17) nor in the boundary conditions (18) an arbitrary 
constant appears. The solution of the temperature field 
will, therefore, have the form 

t - ti a,7 x 
-= 
to - ti fC- -1 L2’L (19) 

It is, of course, a well-known solution of an unsteady 
heat conduction problem. The parameter a,z/L’ is 
referred to as Fourier number. 

The moisture conservation equation (13) is made 
dimensionless with the following new variables 
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x=;, r/E, AW= 
K(W- Wi) 

L2 D*(tO - fi) 
(20) 

It is observed that only differentials of the moisture 
content appear in equation (13). The moisture content 
W can then be interpreted as the difference between the 
moisture content W and its original value Wi. In this 
way no prescribed moisture content is available and 
the dimensionless parameter AW has to be formed 
with a reference moisture content formed by a proper 
combination of the prescribed values. This is done in 
the last equation (20). The moisture conservation 
equation has the form 

a(AW) d2t d’(AW) 

-=dx2+- a? ax2 (21) 

with the boundary conditions 

z=o: w=o 

z > 0, x =0 and 
at a(AW) 

x = 1: ax + ~ = 0. (22) 
ax 

The temperature now appears in the differential equa- 
tion and in one of the boundary conditions and the 
solution ofequation (21) thus depends on the tempera- 
ture field expressed by equation (19). The solution will 
therefore have the form 

K(W- Wi) 

D*(tO - ti) 
=f($&$. (23) 

s 

The dimensionless parameter Kr/L2 has the same form 
as the Fourier number in equation (19) and may be 
called moisture transfer Fourier number, the para- 
meter K/a, is referred to in the literature as Luikov 
number. 

Solutions of the equations (17) and (21) with the 

boundary conditions (18) and (22) were obtained by 
computer analysis. The solution procedure is de- 
scribed in the appendix. The solutions are presented in 
Figs. 1 and 2. 

Figure 1 shows the dimensionless moisture para- 
meter AW as a function of the dimensionless distance 

x/L. The parameter on the curves is the dimensionless 
time Kz/L’ counted from the start of the temperature 
change on the surface x = 0. It may be called moisture 
transfer Fourier number. The full lines present the 
moisture fields for the parameter, as/K = 250. The 
inverse of this parameter is in mass transfer processes 
referred to as Luikov number. The dash-dotted lines 
are for the parameter as/K = 10. Two lines are also 
shown for as/K = 100. It can be observed that the 
Luikov number exerts an influence on the develop- 
ment of the moisture field for increasingly shorter time 
periods as the value of the Luikov number decreases. 
This is so because the development of the moisture 
field lags behind the development of the temperature 
field, especially at large values of as/K. The term 
a2t/ax2 in equation (21) vanishes when the tempera- 
ture profile becomes linear. The fact that the mass 
transfer equation assumes the same form as the 
unsteady heat conduction equation for small values of 
the Luikov number has also been pointed out in [9]. 

The way in which the moisture field develops can be 
understood from the following physical conside- 
rations. The transport of vapor by diffusion is rigidly 
coupled to the development of the temperature field 
according to equation (4), without the second right 
hand term. The vapor flux is constant along the 
distance x in the slab when the temperature drop is 
linear and this is the case for the steady temperature 
profile. No vapor has, therefore, to be created or 
absorbed in the interior of the slab and the moisture 

FIG. 1. Local moisture content parameter in a porous slab as a function of the moisiure transfer Fourier 
number for three values of the reciprocal Luikov number. 
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content can remain at its original value. Only at the 
two surfaces the situation is different. The vapor 
moving away from the heated surface (X = 0) has to be 
replaced by evaporation of the liquid. Correspond- 

ingly, the moisture content drops in the neighborhood 

of this surface. The inverse situation is found at the 

cooled surface .Y = L. Mathematically the situation 
described above is expressed by the fact that the 

driving force term vanishes in equations (13) and (21). 
The situation is different when the temperature field 

is not linear as it occurs during the developing period 
of the temperature field. In this case, the mass flux of 
vapor by diffusion decreases along the distance x and 

vapor has to be absorbed by condensation. This then 
increases the moisture content in the interior of the 

slab even before the change initiated at the boundaries 
reaches that location. This effect can clearly be seen in 

the figure. Mathematically it is indicated by the fact 
that a force term depending on temperature appears 
now in equations (13) and (21). 

Figure 2 is obtained from Fig. 1 by plotting the 

dimensionless moisture concentration parameter AW 
at x = 0 over the dimensionless time. The fact that part 

of the vapor flux is created by evaporation in the 

interior of the slab is obviously the explanation for the 

change in the concentration parameter with varying 

Luikov number in the early time zone. 
The solution presented in Figs 1 and 2 has physical 

significance for positive values of the moisture con- 
centration W only. A limiting condition is, therefore, 
that the moisture concentration W reaches the value 
zero at x = 0. This limiting condition for the initial 

moisture content Wi at which dryout is obtained at x 
= 0 and time 7 can be obtained from equation (23) by 

setting W= 0 at .Y = 0. The resulting equation has the 
form 

K wi* Kr K 

D*(t, - ti) = f!- -1 L* 'cc, 

Figure 2 actually presents this functional relation 

when the parameter AW, on the ordinate is in- 
terpreted as -K WJ[D*(t, - ti)]. For any value AW, 
one can calculate the Wi leading to W= 0 by the 
equation 

W, = -AW, 
D*(t,, - ti) 

K 

The time at which W = 0 is reached can then be read on 

the abscissa. 
Dryout of a slab 

The solutions obtained in the previous paragraph 

lose their validity beyond the time when the surface x 

= 0 has reached the moisture content W= 0. From 

then on a dry layer develops adjoining this surface 
which increases with increasing time. The developing 

moisture field during this period is considered in this 

section. 
Dryout starts at a time when the temperature field 

has already reached steady state unless the ratio q/K 

has a very small value. In this section, it is, therefore, 

assumed that the temperature field is developed. The 

equations (26) and (27) below describe the moisture 
field and the boundary conditions. The problem is 
analogous to heat conduction with a moving 

boundary. 

aw d2W 

-=KF a7 
(26) 

With zd indicating the time at which W= 0 at x = 0, 
the starting condition is 

T = Td, w= w, 

W, denotes the moisture content at the beginning of 

dryout taken from Fig. 1. 

The boundary conditions are 

(27) 

FIG. 2. Moisture content parameter at the hot surface of the porous slab plotted over the moisture transfer 
Fourier number for four values of the reciprocal Luikov number. 
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The thickness of the dry layer is called 5. 
The equations are made dimensionless with the 

following variables 

This results in the dimensionless mass conservation 
equation 

aw a2w 

x - ax2 

and the dimensionless boundary conditions 

dt x=~.wz= _D*(to-tJat aw 
KW, ax ax 

(29) 

(30) 

~*(t~ - ti) at aw 
x= 1: 

KWi 
z+x=o 

in which the dimensionless temperature gradient is 

at 
-= 1. 
ax 

There are now two dependent variables t and Wand it 
is seen from equations (29) and (30) that the solutions 
will have the form 

The results of a computer calculation are presented 
in Figs. 3-6 for the values 2.5, 5, 7.5 and 10 of the 
thermal mass diffusion parameter D*(to - t,)/(K Wi). 
The computation procedure is again described in the 
appendix. 

It can be observed that the moisture ratio W/Wi 

decreases near the hot surface of the slab and increases 
near the cold surface. The curve for KT/L’ x lo2 = 0.05 
belongs to a parameter us/K = 250. For the other 
curves, the influence of this parameter disappears. 
After a certain time, described by an equivalent 
Fourier number Kr,,/L2, the moisture at the hot 
surfaces reaches the value zero. At that moment dry- 
out starts and the dried out region expands into the 
interior of the slab. An asymptotic ‘steady’ state 
situation is finally reached in which the moisture 
content increases linearly with increasing depth of the 
slab. The depth to which dry-out penetrates increases 
with increasing value of the thermal mass diffusion 
parameter D* (to - tJ/K Wi as seen from a com- 
parison of the Figs 3-6. The total moisture content in 
the slab has to remain constant. Accordingly, the local 
moisture content at the cool surface increases with 
increasing value of the thermal mass diffusion para- 
meter. The location of the dry-out front as a function of 
the dimensionless time, described by the moisture 
transfer Fourier number KT/L’, is presented in Fig. 7. 

The local moisture content for the steady state can 
be calculated in a simple way. The original total 
moisture content in the slab, expressed in the dimen- 
lsionless parameters shown in Figs. 3-6, has the area 1. 

176 
14 I 

IO 2 

7 74 

4 59 

259 

109 

c 105 
, 3 

04 05 06 07 08 0.9 IC 

FIG. 3. Local moisture ratio in a slab under dry-out conditions with the moisture transfer Fourier number as 
parameter. The thermal mass diffusion parameter has the value 2.5. 
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FIG. 4. Local moisture ratio in a slab under dry-out conditions with the moisture transfer Fourier number as 
parameter. The thermal diffusion parameter has the value 5. 

The triangle in the figure formed with the steady 

moisture ratio must have the same area. This leads to 

the equation 

i J 1-L w,,=*, 
L wi 

For steady state, ni has to be zero and equation (15) 
changes to 

dt K 

dW D*’ 
(35) 

From the linear character of the temperature and the 
moisture profiles one obtains 

W 
ic 

(36) 

With the parameter m defined by the equation 

D*(to - ti) 
m= 

kW, 

one obtains 

w,, I 

Wi 
m. 

40 
co 

36 

8 14 

32 
6 14 

28 459 

24 
309 

20 I59 

16 0 591 

12 
005 
0 

08 

04 

0 
01 0.2 03 04 05 06 07 08 09 10 

X/L 

(38) 

FIG. 5. Local moisture ratio in a slab under dry-out conditions with the moisture transfer Fourier number as 
parameter. The thermal diffusion parameter has the value 7.5. 
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32- 

24- 

X/L 

FIG. 6. Local moisture ratio in a slab under dry-out conditions with the moisture transfer 
parameter. The thermal diffusion parameter has the value 10. 

Fourier number as 

The equations (34) and (38) can be solved for the 
location 5, of the dry-out front and for the moisture 
content W, 1 at the cold surface. One obtains 

(39) 

+fG (40) 

Numerical examples 
One of the dry-out curves in the Figs. 3-6 will be 

compared with a dry-out curve measured by Krischer 
and Rohnalter and reproduced on page 220 [3]. The 
measurements were made in the way that a horizontal 
tube 50cm long was filled with moist sand with an 

average grain diameter of 0.2 mm. The two ends of the 
tubes were sealed and kept at constant temperatures of 
70°C and 20°C for a period of 5 months. The originally 
uniform moisture content was rearranged by the 
temperature field and steady state was established by 
the end of that time period. The tube was opened and 
the local moisture content was measured along the axis 
of the tube. A sketch of the tube and two moisture 
profiles are reproduced in Fig. 8. It may be observed 
that dry-out occurred when the original moisture 
content was Wi = 0.025. This curve will now be 
compared with one of the calculated steady state 
moisture distributions. 

The ratio of the moisture content WL to the original 
moisture content has the value 6.8 according to Fig. 8. 
Equation (40) results with this ratio in the parameter 

D*lt -t 1 
3 E2.5 

K W, 

FIG. 7. Location of the dry-out front in a heated porous slab plotted over the mass transfer Fourier number 
for four values of the thermal mass diffusion parameter. 
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FIG. 8. Local rearrangement of the moisture content of an 
unsaturated sand after steady state is asymptotically attained. 

m = 23.1. The tangent to the moisture curve shown as 
dashed line in Fig. 8 results in the value 0.31 for the 
parameter 1 - r/L and equation (39) gives an m value 
of20.8 in fair agreement with the value obtained above. 
Assuming that the temperature gradient along the 
tube and the moisture gradient in the wet region of the 
tube are essentially constant, we can rewrite equation 

(35) 

K AT 
D+=L\w. (41) 

The temperature drop in the moist region of the tube is 

0.175 
At=50-= 

0.5 
17.5”C 

and the moisture increase in this region is 

AW= 0.17. (43) 

With this one obtains from equation (41) 

K At 17.5 
-_= 
D* 

__ = - = 113°C. 
AW 0.17 

(44) 

The vapor diffusivity through the porous material is 
estimated to be approximately l/5 of the diffusivity of 
vapor in a bulk mixture of water vapor and air. 

D, = 4 x 10e6 m*/s. (45) 

From equation (12) one obtains the value 

D* = 0.954 x lo- l1 m2/s “C (46) 

and equation (44) results in the moisture diffusivity 

K = 1.185 x 10-gm2/s. (47) 

With this parameter one can now determine the time at 
which steady state is approached under the experimen- 
tal conditions using the moisture transfer Fourier 

number Kr/L* from Fig. 7. This value is estimated to 
be 

Kr 
F z 0.15. 

The time at which steady state is approached is 

0.05 x 0.25 
r*- lo-’ 2 1.05 x 10’s 2 4 1.185 months. (49) x 

This time is in good agreement with the time estab- 
lished by Krischer and Rohnalter. The comparison in 
this section is taken to indicate that the constant 
property analysis provides a reasonable first approxi- 
mation to dry-out processes. 

Figure 8 shows that the measured gradient is smaller 
near the dry-out front than near the cool end of the 
pipe. Figure 6 shows the opposite behavior for tran- 
sient conditions and any of the variations of the 
transport properties neglected in the analysis would 
also lead to a gradient of the moisture distribution 
curve which is larger in the neighborhood of the dry- 
out front than further away. No explanation for the 
opposite trend found in the experiments can be offered 
at present. 

Figures 3-7 provide also the possibility to obtain 
the approximate time after which dry-out starts. An 
extrapolation of the curves which start with W = 0 at x 
= 0 results in an approximate Fourier number Kz,/L* 
= 0.2. An introduction of the same moisture diffusivity 
and length of the sample gives a time td of approxi- 
mately five days. 
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APPENDIX 

Solution methodology 
The primary tool used in solving the foregoing equations is 

the Patankar-Sualdina method r121. This is a fullv imDlicit 
finite difference scheme designedLford two-dimensional para- 
bolic type problems. The method has an extensive prior use 
for boundary layer problems and it is similarly being used for 
the present problem with an appropriate modification of the 
moving boundary. The solution is obtained by starting with 

known values at 7 = 0 and marching with time in the 
direction of increasing 7. For the case of no dry-out equations 
(17) and (21) with boundary conditions (18) and (22) were 
solved with 200 grid points in the region 0 i x < 1. For the 
numerical computation, the dimensionless time, fn was 
defined as Kr/L’ so that aJK appeared as a parameter in 
equation (17). In the 7 direction, the grid encompassed about 
5000 points when computation was continued until steady 
condition was reached. Aside from the accuracy tests in- 
volved with the step size studies, comparisons were made for 
the steady state condition with the analytical results. They 
agreed to within 0.03 %. For the case of dry-out, the problem 
is analogous to a heat conduction with a moving boundary. 
For this case, equations (29) and (31) were employed. The 
boundary condition at x = 5 was used by treating the 
boundary as a porous wall with the mass flow out of it 
calculated from equation (30). The deployment pattern of the 
grid points is the same as for the case of no dry-out. The 
computed steady moisture profiles agree to within 0.01 y0 
with the exact analytical results. 

UNE ANALYSE GENERALE DE LA MIGRATION D’HUMIDITE CAUSEE PAR 
DES DIFFERENCES DE TEMPERATURE DANS UN MILIEU POREUX NON SATURE 

RCume - Une analyse dtcrit la migration d’humiditd dans une plaque de materiau poreux non sature 
lorsque la temperature dune face est soudainement portee a une valeur plus ilevee tandis que la temperature 
de l’autre face est maintenue constante. Les deux faces sont supposdes impermiables au flux massique. Les 
proprietds thermodynamiques et de transport intervenant dans les equations qui dtcrivent la temperature et 
le transport d’humidite sont supposees constantes. Des relations trb getterales sont obtenues pour le champ 
d’humiditi et son changement dans le temps. Avant l’assbchement, un parambtre sans dimension dicrivant le 
champ de temperature est une fonction des nombres equivalents de Luikov et de Fourier. Apres l’apparition 
de l’asstchement, le taux d’humiditt depend en plus du coefficient de diffusion couplee. Les rbsultats de 
I’analyse present&s dans les Figs. l-7 decrivent la migration d’humiditt avec une bonne precision quand la 
variation des proprietb est faible dans le domaine des variables independantes et ils peuvent etre utilises 

comme une premiere approximation dans les autres cas. 

EINE ALLGEMEINE ANALYSE DER DAMPFWANDERUNG AUFGRUND VON 
TEMPERATURUNTERSCHIEDEN IN EINEM UNGESATTIGTEN PORGSEN MEDIUM 

Zusammenfassung-Es wurde eine Analyse durchgefiihrt, welche die Dampfwanderung beschreibt in einer 
Platte aus ungesattigtem porosem Material unter der Bedingung, dalj die Temperatur der einen Seite 
plotzlich auf einen hoheren Wert angehoben wird, wahrend die Temperatur der anderen Oberflache 
konstant bleibt. Fiir den Stofftransport werden die beiden Oberflachen als undurchdringbar angenommen. 
Die thermodynamischen und die TransportgroDen in den Gleichungen des Temperatur- und Dampftrans- 
ports sind als konstant vorausgesetzt. Damit werden sehr allgemeine Beziehungen fur das zeitlich 
verlnderliche Dampffeld erhalten. Vor dem Einsetzen des dry-out beschreibt ein dimensionsloser Parameter 
das Dampffeld als eine Funktion einer aquivalenten Luikov- und Fourier-Zahl. Die Abhlngigkeit von der 
Luikov-Zahl wird nur merklich fur friihe Perioden und fiir kleine Werte der Luikov-Zahl. Nach dem 
Einsetzen des dry-out hlngt das Dampfverhaltnis zusatzlich von einem thermischen Massendiffusionskoef- 
fizienten ab. Die Ergebnisse der Analyse, wie sie in Fig. l-7 angegeben sind, beschreiben die eigentliche 
Dampfwanderung mit guter Genauigkeit, wenn die Anderung der Stoffwerte gering ist wie im Bereich 
unabhangiger Variabler die in speziellen Situationen auftreten, fur andere Fllle aber sollten sie als ntitzliche 

erste Annaherungen dienen konnen. 

OSIIIHH AHAJIH3 IIEPEMEIIIEHHS BJIAl-M IIOfl fiEHCTBMEM IIEPEflAAA 
TEMflEPATYP B HEHACbHIIEHHOH IIOPMCTOH CPEAE 

AIIIIOT~LUI~~ npOBeneH aHanki3 nepeMeueHsa Bnam B nnwTe ~3 HeHacbIueHHoro nopric~oro Mare- 
pnana a cnyrae. xoraa TeMneparypa on~ol noeepxHocTki MrHOBeHHO so3pacraer. a npyroti nonnepzor- 
BaeTCRIlOCTo~HHOtii.&XLUIOnaraeTCH,YTO o6e nOBepXHOCI'H RBnIK)TCR HenpOHHUaeMbIMB ana nOToKa 

MaCCbI U ST0 TepMOLWlHaMHWCKHe H TpaHCIIOpTHbIe CBOkTBa B ypaBHeHmX TeWIO- W BnarOI,epeHOCa 

XBnRlOTCII nOCTORHHbIMA.6narOAapn npkiH8TbIM LlOnyIUeHHflM nOJIyqeHb1 BeCbMa 06mse COOTHOUJeHHI 

~llO~~CaHBR~3MeH~H~~BOB~M~HBCO~ep~aH~~B~ar~.~OHaCTy~~eH~~BbICbIXaH~~6e3pa3MepHbI~ 

napahrerp, onacbmarotueti pacnpeaenemie enaroconepaamfa snnflercs @yHKUHefi ronbko gucen 
nbIKOBa H @ypbe.kIkiRHkie 'WCnanbIKOBa 3aMeTH0 TOJlbKO Ha Ha'laJIbHOficcTanHH W TOnbKO B Cnyqae 

er0 ManbIX 3Ha’ieHHk B PCKkiMe BbICbIXaHWR Ha OTHOCUTeJbHOe BJIarOCOnep~aHHe Ha'IBHaeT TaKEe 

oKa3bmaTb BnmHIte K03+$tiuAeHT Teptdone~~ysss MaccbI. PesynbTaTbI a~anasa.npencTaBneHHbIe Ha 

pW. 1-7, MOryT C ynOBneTBOpHTe,IbHOfi T09HOCTbH) OnWCbIBaTb LlekTBHTenbHylo KapTHHy nepeMeL"e- 
HHII BnarU Ilp&4 He60nbUIOM U3MeHeHUU XapaKTepHCTRK rIpOUeCCa B 06nacTs He3aBHCWMbIX IIep’ZMcZH- 

HbIX B OLIHOM YaCTHOM CJlyWe. W WX MOXHO RCnOJIbSOBaTb B Ka'leCTBe nepBOr0 npe6mmeHHa "pe 

onkicawiki npouecca,npoTeKamluero B npyrex ycnoesax. 


