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Abstract — An analysis was performed which describes the moisture migration in a slab of an unsaturated
porous material for the condition that the temperature of one surface is suddenly increased to a higher value
whereas the temperature of the other surface is maintained constant. The two surfaces are assumed
impermeable to mass flow. The thermodynamic and transport properties occurring in the equations
describing the temperature and moisture transport are assumed constant. In this way, very general relations
are obtained for the moisture field as it changes in time. Before dry-out, a dimensionless parameter describing
the moisture field is a function of equivalent Luikov and Fourier numbers only. The dependence on the
Luikov number becomes noticeable solely for the early periods and for small values of the Luikov number.
After the onset of dry-out, the moisture ratio depends in addition on the thermal mass diffusion coefficient.
The results of the analysis presented in the Figs 1-7, should describe the actual moisture migration with good
accuracy where the variation of the properties is small in the range of the independent variables occurringin a
specific situation and they should be useful as a first approximation for other situations as well.

NOMENCLATURE P, density;
¢, specific heat; ¢, potential;
D, vapor diffusion coefficient ; T, time.

D*,  see equation (12);

f, porosity; Subscripts
h, enthalpy; :

. a, air;
hy,,  heat of vaporization; d dry soil;
. 3 k]
b mass flux; i initial ;
k, thermal conductivity; i liquid;
K, moisture diffusion coefficient; L at x = L:
. £l 3
L, thickness of slab; 0 atx =0:
m, flux of liquid and vapor per unit time and s soil:
area; v, vapor;

s molecular weight ;

M . co,  at timet — oC.
R, universal gas constant;

ts

T,

temperature; Dimensionless parameters
s absolute temperature; K
w, vapor mass fraction; = . Luikov number;
W,  moisture content (mass of liquid per mass of o
dry soil); T
X, coordinate; IR Fourier number;
o, thermal diffusivity ;
D*(ty — t; ipp s
M, thermal mass diffusion parameter;
KW,
* Adjunct Associate Professor at the University of Kt . .
Minnesota. = moisture transfer Fourier number.
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INTRODUCTION

CoMBINED heat and mass transfer with phase changein
a porous medium is a process which occurs frequently
in nature as well as in various engineering endeavors.
Drying and humidification in chemical processes and
in climate control or movement of moisture in the soil
are examples. Such processes have, therefore, been
widely studied by agricultural, civil, chemical, and
petroleum engineers.

An analysis of these processes is complicated by
various factors. The structure of the solid matrix varies
widely in shape. It may, for instance, be composed of
cells, fibres or grains. There is, in general, a distribution
of void sizes and the structures may also be locally
irregular. Energy transport in such a medium occurs
by conduction in all of the phases as well as by
convection with those phases which are able to move.
Mass transport occurs within the voids of the medium.
In an unsaturated state these voids are partially filled
with a liquid, whereas the rest of the voids contains
some gas. Most frequently, the liquid is water and the
gas is air. We will, therefore, in the following refer to
the liquid as water and to the gas as air. Evaporation or
condensation occurs at the interface between the water
and the air so that the air is mixed with water vapor. A
flow of the mixture of air and vapor may be caused by
external forces, for instance, by an imposed pressure
difference. The vapor will also move relative to the gas
by diffusion from regions where the partial pressure of
the vapor is higher to those where it is lower. The
partial pressure of vapor at the interface to the liquid
is determined by the sorption isotherm, which makes it
dependent on moisture content as well as on tempera-
ture. The saturation pressure is also different on a
curved surface from that on a plane one and is
influenced by the presence of air. The flow of liquid is
caused by external forces, like imposed pressure differ-
ences, gravity, and internal forces, like capillary,
intermolecular and osmotic forces.

A detailed study of the transport processes occut-
ring within the solid matrix and in the voids is,
therefore, very complicated even for a regularly shaped
matrix and is impossible for the irregular void con-
figurations existing in general in porous media. The
normal approach in an analysis is, therefore, to
consider the media involved as continua. The energy
and mass fluxes then have to be described by con-
stitutive equations. The various driving forces in-
volved make the constitutive equations quite com-
plicated. The difficulty in handling them is aggravated
by the fact that the transport properties involved vary
strongly with the structure of the porous medium, with
moisture content, and with temperature. An extensive
literature exists which endeavors to formulate the
transport processes mathematically. Early work was
done in the Soviet Union [1] with important basic
contribution by Luikov [2]. A wide range of transport
processes in porous media was also studied simul-
taneously in Germany by Krischer [3]. More recent
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work is referenced in the paper by Eckert and Pfender
[4]. _

Numerous solutions of the transport equations are
also found in the literature. Only some can be listed
here [5-11]. The selection is restricted to the problem
which will be discussed later in this paper. The
referenced solutions consider certain types of media
and boundary conditions and provide valuable infor-
mation for the specific situation. It is, however, difficult
to obtain from them a general understanding which
can be used as a guide for conditions for which no
specific solutions are available.

This s a situation similar to the one which existed in
the field of heat transfer at the beginning of this
century. A considerable number of relations obtained
from experiments were at that time available for
specific fluids, temperatures and boundary conditions.
A systematic understanding of heat transfer processes,
however, was obtained only when W. Nusselt in-
troduced an idealized model of a constant property
fluid. In this way he derived through dimensional
analysis relations expressing Nusselt numbers as func-
tions of Reynolds and Prandtl numbers, relations
which describe heat transfer processes in a very general
way. Such relations have been accepted by the
engineering community and are still used widely
today. They have in the meantime been supplemented
by specific more accurate information which includes
the variation of the properties involved.

It is felt that such general relations describing heat
and mass transfer for certain classes of porous media
would be valuable and that they can be obtained by an
approach similar to the one mentioned above. Such
relations can then be applied to situations where the
actual variation of the properties is small in the range
of independent variables occurring in the specific
situation and are useful as a first approximation for
other situations as well.

The present paper uses this approach for a class of
heat and mass transfer processes characterized by the
following specifications. The effect of gravity is neglig-
ible and there is no mass flow through the boundaries
of the medium. The porous matrix is of such a nature
that the saturation pressure at the interface between
liquid and vapor is a function of temperature only.
This is, for instance, the case in a granular material
when only a small number of pores have sizes smaller
than 1 um and as long as the moisture content is not
too small [4]. The pore size is, on the other hand,
sufficiently small so that the vapor pressure through-
out any cross-section of the vapor-gas passages
departs from the saturation pressure at the interface by
a negligible amount only. The medium is also postu-
lated to be macroscopically homogeneous and not to
swell with changing moisture content.

TRANSPORT EQUATIONS

The restrictions defining the class of media for this
study have been mentioned before. The following
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restrictions will be introduced for the condition under
which the transport processes occur:

1. No mass flow passes the envelope of the porous
medium.

2. The vapor pressure p, is small compared to the
total pressure p which, therefore, can be approxi-
mated by the air pressure p,.

3. Temperature differences imposed on the medium
are small so that the total pressure (and the air
pressure) can be considered constant during the
transport processes. The influence of a slight
movement of the air within the voids of the
material will therefore be neglected and the
diffusion of vapor in the voids will be described
by Fick’s equation.

The conservation equation for energy can then be

written in the following form

ot
Pdcsa—T = V(kVt) + (b, + h)j, + hiji. 1)

The various symbols in the equation are defined in the
list of nomenclature. The term on the left hand side
describes energy storage in an infinitely small control
volume. ¢, denotes the specific heat of the moist
medium per unit dry mass and p, denotes the dry
density. The first term on the right hand side describes
heat flow by conduction. The thermal conductivity k
has to include heat conduction in the liquid, vapor, and
air as well as in the solid material. The second term on
the right hand side describes enthalpy transport with
the vapor. j, denotes the vapor mass flux and the
enthalpy of the vapor is expressed as the sum of the
heat of evaporation h;, and of the sensible heat h, of the
liquid. The third term on the right hand side describes
the enthalpy transport with the liquid. j, denotes the
mass flux of the liquid.

No net mass flux occurs through the boundaries of
the porous material ; accordingly j, + j, = 0. The same
condition holds in the interior of the medium for
steady state. During the transient period there will be a
small net mass flux in the interior. Its influence on the
enthalpy transport will be neglected with the justifi-
cation that the heat of vaporization h,, is large
compared to the sensible heat of the liquid h,. Equation
(1) then transforms to the following equation when in
addition the vapor flux j, is expressed by Fick’s
equation.

ot
pdcsa_ = V(kVt) + V(paDshlvVW)' (2)
T

The driving potential in the diffusion equation is
expressed as a gradient of the mass fraction w of the
diffusing vapor. D; describes the mass diffusion coef-
ficient of vapor in the porous matrix. It has to account
for the fact that only part of the cross-section of the
medium is available for vapor diffusion and also for the
tortuosity of the diffusion path. The total density in the
diffusion equation has been approximated by the air
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density p,. The cross sections of the passages in the
porous medium are in general quite small, justifying
the assumption that the partial pressure of vapor at
any location is equal to the saturation pressure at the
local temperature. This pressure is in porous media a
function of temperature ¢ and moisture content W and
is given by the sorption isotherm. At a prescribed
constant pressure such a relation holds also for the
vapor mass fraction w

w = f(W,1). (3)

The operator Vw can therefore be expressed in the
following way

ow ow
Vw=—Vt + —VW. 4)
ot ow
The dependence of the saturation pressure p, and
the saturation mass fraction w on moisture content W
has various causes. The equilibrium saturation pres-
sure of a liquid in a dispersed phase is different from
that in a bulk liquid. This effect can be treated
thermodynamically. Equation (70) in [11] describes
the relation between the saturation pressure p, and the
saturation pressure p,, of vapor in contact with its
bulk liquid phase through a plane interface. The first
term on the right hand of this equation describes the
fact that the saturation pressure in a vapor—air mixture
is different from the saturation pressure in pure vapor.
This effect, however, is negligibly small as long as the
total pressure of the mixture is not too far away from
atmospheric pressure. The most important of the
effects is that of capillarity described by the second term.
In a grainy matrix the potential @ in the referenced
equation has then to be replaced by — (6/pr,,) where @
is the surface tension, r, is the mean radius of
curvature, and p; is the density of the liquid. On a
concave surface, the difference of the saturation pres-
sure on a plane surface and on a concave surface is
positive and becomes larger with decreasing radius of
curvature of the surface. The difference is 109, when
the mean radius of curvature of the surface is 10~ 8 ym.
Such small curvatures are expected at very fine porous
material or at very low moisture content only. Adsorp-
tion effects become important in very thin liquid
layers comprising only a few molecules. The liquid
behavior differs in such a layer from a liquid in bulk
when the layer is 10 molecules or less thick. This means
that layers of order 10~° ym are involved, which again
indicates that the moisture content has to be very
small. Sorption isotherms which describe these effects,
for a number of materials are presented on pages
52-62 of [3]. One finds there that a 109 reduction of
the saturation pressure occurs, for instance, for con-
crete at a moisture content W= 0.02 and that for brick
the corresponding moisture content is 0.002. The
second term in equation (4) will, therefore, be dropped
for the class of porous materials considered in this
paper. The energy equation (2) can then be transfor-
med to
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ot
pacs7- = V(k Vi) )
ot
in which the soil conductivity k; is given by the
equation

ow
ks=k+paDshluh‘“' (6)
ot

This conductivity is the one which is obtained by
conductivity measurements in a porous medium [4].
The conservation equation for moisture can be
written in the following form
ow
Pa— = Vo DVW) + p V(K V). M
The equation expresses the fact that the vapor trans-
ported by diffusion into a volume element of soil and
the liquid transported by various forces has to be
stored and increases the moisture content in the
element.

The left hand side of the equation should contain a
term describing the storage of vapor in addition to the
one describing the storage of liquid. The vapor storage,
however, is extremely small compared with the liquid
storage and will be neglected. An upper bound for
the vapor mass stored per unit volume is
[fpa(éw/dt)(0t/87)]. The moisture transport in liquid
form described by the second term on the right hand
side is written as a function of the gradient of the
suction potential ¢. The moisture diffusivity K, de-
pends on the parameters describing the porous matrix,
on the moisture content, and on the temperature. Fora
specific homogeneous soil it is therefore a function of
W and t.

O =f(W,1). ®)

The dependence on temperature is in general con-
siderably smaller than the dependence on moisture
content W and will be neglected. The conservation
equation then takes on the form

ow

ow
—_— —V —Vt )+ V(KVW 9
iy < G ) ( ) ®
into which a new moisture diffusivity K has been

introduced defined by the equation

le ¢

k= ‘ow

(10)

CONSTANT PROPERTY SOLUTIONS

Slab with a stepwise temperature variation

A slab of thickness L will be considered as a specific
example. The temperature and moisture content are
prescribed as initially uniform and the temperature of
one surface is suddenly increased and kept constant
whereas the temperature of the other surface is main-
tained at the original value. The energy equation (5)
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takes on the form when the properties are considered
constant
ot &t

= o, (11)

ot ax

With the definition of a thermal mass diffusion coef-
ficient D*, which is also considered constant, defined
by

0 M,D, o
&DW USpU

D* = ki
ps 8t  p,RT ot

(12)

the moisture conservation equation reads

6W_D* 62t+K62W (13)
ot ox? ax?’
The boundary conditions for the problem are

at t=0:r=1, W=W, (14)

at >0, x=0:t=1¢ty m=0,
x=L:t=t, m=0

where the specific mass flux m is given by

SO

h= —D* — — K=
" ox Ox

(15)
It is evident that the energy equation (11) with its
boundary conditions is independent of the moisture
field. The equation and its boundary conditions will
now be made dimensionless by the following change of

variables
x T r—t;

, T = =, (16)

X = — —2’t=
L L to — &

It is noted that no value for a characteristic time is
prescribed to the problem. Such a time has, therefore,
to be formed with a proper combination of other
prescribed parameters. The energy equation now takes
on the form

ot ot (17
or, ox* )
The dimensionless boundary conditions are:
7,=0:t=0
,>0,x=0:t=1Lx=1:t=0. (18)

It is observed that neither in the differential equation
(17) nor in the boundary conditions (18) an arbitrary
constant appears. The solution of the temperature field
will, therefore, have the form

t— AT X
to — t; f<L2’~)'

It is, of course, a well-known solution of an unsteady
heat conduction problem. The parameter a,t/L? is
referred to as Fourier number.

The moisture conservation equation (13) is made
dimensionless with the following new variables

(19)
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X Kt
s r"l'=

_K(W-W)
L 12’

X = =
D*(ty — ty)

(20)
It is observed that only differentials of the moisture
content appear in equation (13). The moisture content
W can then be interpreted as the difference between the
moisture content W and its original value W,. In this
way no prescribed moisture content is available and
the dimensionless parameter AW has to be formed
with a reference moisture content formed by a proper
combination of the prescribed values. This is done in
the last equation (20). The moisture conservation
equation has the form

AAW) 2%

2(AW)
ot o2

ox?

@1

with the boundary conditions
1=0: W=0

>0, x=0 and x=1: ﬁ+M=O. (22)

Ox ox

The temperature now appears in the differential equa-

tion and in one of the boundary conditions and the

solution of equation (21) thus depends on the tempera-

ture field expressed by equation (19). The solution will
therefore have the form

K(W-— Wi)_f Kz K x
D*to—t) °\L?*’a, L)

The dimensionless parameter Kt/L2 has the same form
as the Fourier number in equation (19) and may be
called moisture transfer Fourier number, the para-
meter K/a, is referred to in the literature as Luikov
number.

Solutions of the equations (17) and (21) with the

(23)
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boundary conditions (18) and (22) were obtained by
computer analysis. The solution procedure is de-
scribed in the appendix. The solutions are presented in
Figs. 1 and 2.

Figure 1 shows the dimensionless moisture para-
meter AW as a function of the dimensionless distance
x/L. The parameter on the curves is the dimensionless
time Kt/L? counted from the start of the temperature
change on the surface x = 0. It may be called moisture
transfer Fourier number. The full lines present the
moisture fields for the parameter, a,/K = 250. The
inverse of this parameter is in mass transfer processes
referred to as Luikov number. The dash—dotted lines
are for the parameter a,/K = 10. Two lines are also
shown for a,/K = 100. It can be observed that the
Luikov number exerts an influence on the develop-
ment of the moisture field for increasingly shorter time
periods as the value of the Luikov number decreases.
This is so because the development of the moisture
field lags behind the development of the temperature
field, especially at large values of a/K. The term
&*t/0x? in equation (21) vanishes when the tempera-
ture profile becomes linear. The fact that the mass
transfer equation assumes the same form as the
unsteady heat conduction equation for small values of
the Luikov number has also been pointed out in [9].

The way in which the moisture field develops can be
understood from the following physical conside-
rations. The transport of vapor by diffusion is rigidly
coupled to the development of the temperature field
according to equation (4), without the second right
hand term. The vapor flux is constant along the
distance x in the slab when the temperature drop is
linear and this is the case for the steady temperature
profile. No vapor has, therefore, to be created or
absorbed in the interior of the slab and the moisture

[+ 9]
0.5 s > 367
- —L—gxIO—
a 16.9
04 —— =250
- a 0.3
o3p 7777 =100 ®
™ s />5.9
—— 20
0.2 ./\3.7
e
B . g
s .
oI ) e N5
- /
N T St = e 7502
zle T = ]
i W7
-01f- //.
—02'_//-
—o03f
-0.4
-0.5 ) Y D [ N B A S N DO S| | I
©c ol 02 03 04 05 06 07 08 09 10
X/L

FIG. 1. Local moisture content parameter in a porous slab as a function of the moisture transfer Fourier
number for three values of the reciprocal Luikov number.
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content can remain at its original value. Only at the
two surfaces the situation is different. The vapor
moving away from the heated surface (x = 0) has to be
replaced by evaporation of the liquid. Correspond-
ingly, the moisture content drops in the neighborhood
of this surface. The inverse situation is found at the
cooled surface x = L. Mathematically the situation
described above is expressed by the fact that the
driving force term vanishes in equations (13) and (21).

The situation is different when the temperature field
is not linear as it occurs during the developing period
of the temperature field. In this case, the mass flux of
vapor by diffusion decreases along the distance x and
vapor has to be absorbed by condensation. This then
increases the moisture content in the interior of the
slab even before the change initiated at the boundaries
reaches that location. This effect can clearly be seen in
the figure. Mathematically it is indicated by the fact
that a force term depending on temperature appears
now in equations (13) and (21).

Figure 2 is obtained from Fig. 1 by plotting the
dimensionless moisture concentration parameter AW
atx = O over the dimensionless time. The fact that part
of the vapor flux is created by evaporation in the
interior of the slab is obviously the explanation for the
change in the concentration parameter with varying
Luikov number in the early time zone.

The solution presented in Figs 1 and 2 has physical
significance for positive values of the moisture con-
centration W only. A limiting condition is, therefore,
that the moisture concentration W reaches the value
zero at x = 0. This limiting condition for the initial
moisture content W; at which dryout is obtained at x
= 0 and time 7 can be obtained from equation (23) by
setting W= 0 at x = 0. The resulting equation has the

form
KW, (Kt K
D¥ito—t) ~\L* o)
Figure 2 actually presents this functional relation

(24)
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when the parameter AW, on the ordinate is in-
terpreted as — KW /[ D*(t, — t;}]. For any value AW,
one can calculate the W; leading to W= 0 by the
equation

D*(to — 1))

Wiy = —AW, %

(25)
The time at which W= 0Ois reached can then beread on
the abscissa.

Dryout of a slab

The solutions obtained in the previous paragraph
lose their validity beyond the time when the surface x
= 0 has reached the moisture content W= 0. From
then on a dry layer develops adjoining this surface
which increases with increasing time. The developing
moisture field during this period is considered in this
section.

Dryout starts at a time when the temperature field
has already reached steady state unless the ratio a/K
has a very small value. In this section, it is, therefore,
assumed that the temperature field is developed. The
equations (26) and (27) below describe the moisture
field and the boundary conditions. The problem is
analogous to heat conduction with a moving
boundary.

ow

*w
R

Fea (26)

With 1, indicating the time at which W=0at x =0,
the starting condition is
T=1, W=W,

W, denotes the moisture content at the beginning of
dryout taken from Fig. 1.

The boundary conditions are

d¢ at ow

E el = — = -D¥ — — K—

>t x=¢ W=0, Wdr o ox
(27)

K(Wo—W,)
D*(t~1,)

-05 1 | | I U

| i |

Q.1 02 03 05 0.7 |

H
2 3 5

Kt 2
ﬁxlo

FiG. 2. Moisture content parameter at the hot surface of the porous slab plotted over the moisture transfer
Fourier number for four values of the reciprocal Luikov number.
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ot
—+K—=0.
0x 0x
The thickness of the dry layer is called &

The equations are made dimensionless with the
following variables

T>1, x=0L:D*

_Kr

= Vewy

i

(28)

This results in the dimensionless mass conservation
equation

W W
= 2
ot 0x? (29)
and the dimensionless boundary conditions
d¢ D*(ty —t) ot oW
=f¢W-=——  ~-
x=¢ dr KW, o0x 0x
(30
D*(ty — 1) 0t OW
x=1:—(0 wo 9 =0

KW, o ox

in which the dimensionless temperature gradient is

oy 31

i (31
There are now two dependent variables £ and W and it
is seen from equations (29) and (30) that the solutions
will have the form

¢ <D*(t0—t,.) K‘r)
s Kw, ’L*

7= (32)
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w D*(to—ti) Kt x
X _p(Ee ) BT X3 33
W, f( Kw, 'I*'L (33)

The results of a computer calculation are presented
in Figs. 3-6 for the values 2.5, 5, 7.5 and 10 of the
thermal mass diffusion parameter D*(t, — t;)/(KW)).
The computation procedure is again described in the
appendix.

It can be observed that the moisture ratio W/W;
decreases near the hot surface of the slab and increases
near the cold surface. The curve for Kt/L? x 102 = 0.05
belongs to a parameter o /K = 250. For the other
curves, the influence of this parameter disappears.
After a certain time, described by an equivalent
Fourier number Kt,/L?, the moisture at the hot
surfaces reaches the value zero. At that moment dry-
out starts and the dried out region expands into the
interior of the slab. An asymptotic ‘steady’ state
situation is finally reached in which the moisture
content increases linearly with increasing depth of the
slab. The depth to which dry-out penetrates increases
with increasing value of the thermal mass diffusion
parameter D* (t, — t;)/KW,; as seen from a com-
parison of the Figs 3—6. The total moisture content in
the slab has to remain constant. Accordingly, the local
moisture content at the cool surface increases with
increasing value of the thermal mass diffusion para-
meter. The location of the dry-out front as a function of
the dimensionless time, described by the moisture
transfer Fourier number Kt/L?, is presented in Fig. 7.

The local moisture content for the steady state can
be calculated in a simple way. The original total
moisture content in the slab, expressed in the dimen-
sionless parameters shown in Figs. 3-6, has the area 1.

1
K
22F xig?= 33
i L 242
176
zor D*(t,-t,) !
— Al L L
sk KW, 2.5 102
7.74
16 459
1 al- 259
W B 109
- 12~
W
0.05
IO/ fe)
OS/
0.6
04
o2f,
o {748 N W N T N T T O T OO OO N OO O |
ol 02 03 04 05 06 07 08 09 10

X/L

F1G. 3. Local moisture ratio in a slab under dry-out conditions with the moisture transfer Fourier number as
parameter. The thermal mass diffusion parameter has the value 2.5.
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£

Fi16. 4. Local moisture ratio ir: a slab under dry-out conditions with the moisture transfer Fourier number as
parameter. The thermal diffusion parameter has the value 5.

The triangle in the figure formed with the steady
moisture ratio must have the same area. This leads to

the equation
(1 _ é; WL X
ST L)W,

For steady state, m has to be zero and equation (15)
changes to

=2 (34)

de K
Taw e 35)

From the linear character of the temperature and the
moisture profiles one obtains

¢
(tO_ti)<1 ‘Z> K

- = 36
W, D (36)
With the parameter m defined by the equation
D*(tg — t))
= s 37
m W, (37)
one obtains
WL i3
" (38)
—=m
S
[ = 2%
L

4.0
36
32
28
247~
w
W,

F16G. 5. Local moisture ratio in a slab under dry-out conditions with the moisture transfer Fourier number as
parameter. The thermal diffusion parameter has the value 7.5.



Moisture migration in an unsaturated porous medium 1621

aqb KT ¢ 10%
L

40
36

32

JO T A
cl 02 03 04 05 06 07 08B 09 1.0

X/L

FIG. 6. Local moisture ratio in a slab under dry-out conditions with the moisture transfer Fourier number as
parameter. The thermal diffusion parameter has the value 10.

The equations (34) and (38) can be solved for the
location ¢, of the dry-out front and for the moisture
content W, at the cold surface. One obtains

average grain diameter of 0.2 mm. The two ends of the
tubes were sealed and kept at constant temperatures of
70°C and 20°C for a period of 5 months. The originally
uniform moisture content was rearranged by the

o (39) temperature field and steady state was established by
L Vm the end of that time period. The tube was opened and

W the local moisture content was measured along the axis
VIL/X = \/fr; (40) of the tube. A sketch of the tube and two moisture

Numerical examples

One of the dry-out curves in the Figs. 3-6 will be
compared with a dry-out curve measured by Krischer
and Rohnalter and reproduced on page 220 [3]. The
measurements were made in the way that a horizontal
tube 50cm long was filled with moist sand with an

profiles are reproduced in Fig. 8. It may be observed
that dry-out occurred when the original moisture
content was W, =0.025. This curve will now be
compared with one of the calculated steady state
moisture distributions.

The ratio of the moisture content W, to the original
moisture content has the vatue 6.8 according to Fig. 8.
Equation (40) results with this ratio in the parameter

0.6
[0)
o5 7.5
0.4 50
£ -
L
0.3
02
*
B DMt g
KW,
o /
0 T O O /1 O T T Y A O B A O
5 10 15 20 25 30 35 40
Kt 2
FXIO

Fi6. 7. Location of the dry-out front in a heated porous slab plotted over the mass transfer Fourier number
for four values of the thermal mass diffusion parameter.
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Fi1G. 8. Local rearrangement of the moisture content of an
unsaturated sand after steady state is asymptotically attained.

m = 23.1. The tangent to the moisture curve shown as
dashed line in Fig. 8 results in the value 0.31 for the
parameter 1 — £/L and equation (39) gives an m value
of 20.8 in fair agreement with the value obtained above.
Assuming that the temperature gradient along the
tube and the moisture gradient in the wet region of the
tube are essentially constant, we can rewrite equation
(35)

K AT

— a2 41
D* AW “41)

The temperature drop in the moist region of the tube is

0.175

At = 50—— =17.5°C 42
0.5 “2)
and the moisture increase in this region is
AW=0.17. (43)
With this one obtains from equation (41)
K At 175
— =—=_——=113°C. (44)

D* AW 017

The vapor diffusivity through the porous material is
estimated to be approximately 1/5 of the diffusivity of
vapor in a bulk mixture of water vapor and air.

D, =4x10"°m?/s. 45)
From equation (12) one obtains the value
D* = 0.954x 10" m?/s°C (46)

and equation (44) results in the moisture diffusivity
K =1.185x10""m?/s. 47)

With this parameter one can now determine the time at
which steady state is approached under the experimen-
tal conditions using the moisture transfer Fourier

E. R. G. EckiRT and M. FAGHRI

number Kt/L? from Fig. 7. This value is estimated to
be

Kt
— 2 0.15.

o (48)

The time at which steady state is approached is

0.05x0.25

TR esk 100 S 1.05 x 107 s ~ 4 months. (49)

This time is in good agreement with the time estab-
lished by Krischer and Rohnalter. The comparison in
this section is taken to indicate that the constant
property analysis provides a reasonable first approxi-
mation to dry-out processes.

Figure 8 shows that the measured gradient is smaller
near the dry-out front than near the cool end of the
pipe. Figure 6 shows the opposite behavior for tran-
sient conditions and any of the variations of the
transport properties neglected in the analysis would
also lead to a gradient of the moisture distribution
curve which is larger in the neighborhood of the dry-
out front than further away. No explanation for the
opposite trend found in the experiments can be offered
at present.

Figures 3-7 provide also the possibility to obtain
the approximate time after which dry-out starts. An
extrapolation of the curves which start with W= Qat x
= Qresults in an approximate Fourier number Kt /L?
= 0.2. Anintroduction of the same moisture diffusivity
and length of the sample gives a time 7, of approxi-
mately five days.
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‘APPENDIX

Solution methodology

The primary tool used in solving the foregoing equations is
the Patankar-Spalding method [12]. This is a fully implicit
finite difference scheme designed for two-dimensional para-
bolic type problems. The method has an extensive prior use
for boundary layer problems and it is similarly being used for
the present problem with an appropriate modification of the
moving boundary. The solution is obtained by starting with

known values at v =0 and marching with time in the
direction of increasing t. For the case of no dry-out equations
(17) and (21) with boundary conditions (18) and (22) were
solved with 200 grid points in the region 0 < x < 1. For the
numerical computation, the dimensionless time, 1, was
defined as Kt/L? so that «/K appeared as a parameter in
equation (17). In the 7 direction, the grid encompassed about
5000 points when computation was continued until steady
condition was reached. Aside from the accuracy tests in-
volved with the step size studies, comparisons were made for
the steady state condition with the analytical results. They
agreed to within 0.03 %, For the case of dry-out, the problem
is analogous to a heat conduction with a moving boundary.
For this case, equations (29) and (31) were employed. The
boundary condition at x = ¢ was used by treating the
boundary as a porous wall with the mass flow out of it
calculated from equation (30). The deployment pattern of the
grid points is the same as for the case of no dry-out. The
computed steady moisture profiles agree to within 0.01%,
with the exact analytical results.

UNE ANALYSE GENERALE DE LA MIGRATION D’HUMIDITE CAUSEE PAR
DES DIFFERENCES DE TEMPERATURE DANS UN MILIEU POREUX NON SATURE

Résamé — Une analyse décrit la migration d’humidité dans une plaque de matériau poreux non saturé
lorsque la température d’une face est soudainement portée a une valeur plus élevée tandis que la température
de l'autre face est maintenue constante. Les deux faces sont supposées imperméables au flux massique. Les
propriétés thermodynamiques et de transport intervenant dans les équations qui décrivent la température et
le transport d’humidité sont supposées constantes. Des relations trés générales sont obtenues pour le champ
d’humidité et son changement dans le temps. Avant 'asséchement, un paramétre sans dimension décrivant le
champ de température est une fonction des nombres équivalents de Luikov et de Fourier. Aprés 'apparition
de 'asséchement, le taux d’humidité dépend en plus du coefficient de diffusion couplée. Les résultats de
I'analyse présentés dans les Figs. 1-7 décrivent la migration d’humidité avec une bonne précision quand la
variation des propriétés est faible dans le domaine des variables indépendantes et ils peuvent étre utilisés
comme une premiére approximation dans les autres cas.

EINE ALLGEMEINE ANALYSE DER DAMPFWANDERUNG AUFGRUND VON
TEMPERATURUNTERSCHIEDEN IN EINEM UNGESATTIGTEN POROSEN MEDIUM

Zusammenfassung—Es wurde eine Analyse durchgefiihrt, welche die Dampfwanderung beschreibt in einer
Platte aus ungesittigtem porosem Material unter der Bedingung, daB die Temperatur der einen Seite
plotzlich auf einen hoheren Wert angehoben wird, wihrend die Temperatur der anderen Oberfliche
konstant bleibt. Fiir den Stofftransport werden die beiden Oberfldchen als undurchdringbar angenommen.
Die thermodynamischen und die TransportgroBen in den Gleichungen des Temperatur- und Dampftrans-
ports sind als konstant vorausgesetzt. Damit werden sehr allgemeine Bezichungen fiir das zeitlich
verdnderliche Dampffeld erhalten. Vor dem Einsetzen des dry-out beschreibt ein dimensionsloser Parameter
das Dampffeld als eine Funktion einer dquivalenten Luikov- und Fourier-Zahl. Die Abhingigkeit von der
Luikov-Zahl wird nur merklich fiir frithe Perioden und fiir kleine Werte der Luikov-Zahl. Nach dem
Einsetzen des dry-out hingt das Dampfverhiltnis zusitzlich von einem thermischen Massendiffusionskoef-
fizienten ab. Die Ergebnisse der Analyse, wie sie in Fig. 1-7 angegeben sind, beschreiben die eigentliche
Dampfwanderung mit guter Genauigkeit, wenn die Anderung der Stoffwerte gering ist wie im Bereich
unabhéngiger Variabler die in speziellen Situationen auftreten, fiir andere Fille aber sollten sie ais niitzliche
erste Anndherungen dienen konnen.

OBUIMHA AHAJIA3 NMEPEMELEHUS BIATH NOJA JEMCTBUEM MEPEMNAJA
TEMINEPATYP B HEHACBIIIEHHOW MOPUCTOM CPEJE

Annorammn — [lpoBedeH aHANM3 NEPEMELIEHHA BNAaTH B [LUIMTE M3 HEHACHIIEHHOTO NOPUCTOrO MaTe-
pHana B CTy4ac, KOT A TeMIEPaTyPa O/HOH OBEPXHOCTH MIHOBEHHO BO3PACTaeT, 8 APYroil Noiiepku-
BaeTCA nocTosHHol. [1peanonaraeTcs, 4T0 06e NOBEPXHOCTH ABAAIOTCS HEMPOHHLIAEMBIMH 18 TOTOKA
MACCBl ¥ 4TO TEPMONAHHAMHMYECKHE H TPAHCIIOPTHLIE CBOHCTBA B YPaBHEHHSX TEMJIO- M BAArONEPEHOCA
ABJIAIOTCA NOCTOSHHBIMH. BIaroaps NpUHATHIM JONYIUEHHAM MOJY4EHBI BECMa OOILHE COOTHOLIEHHS
A7 OTIMCAHHS H3MEHEHHUS BO BPEMCHH CO/EPXaHus BiarH. o HaCTYNJIEHUA BRICLIXAHUS Ge3pa3MepHbiit
NapameTp, ONHCHIBAIOLIMA DPACNPENETCHHE BArOCOACPKAHUA SBIACTCH OGYHKHHEH TOABKO 4Mcen
JleixoBa u @ypre. Biusnue yucna JIpIxOBa 3aMETHO TOMLKO HA HAYALHOMH CTA/IMM M TOJLKO B cnyvae
€ro ManbiX 3HA4YeHHA. B pexume BRICHIXAHHS HA OTHOCHUTENbLHOE BJIArOCONEPKAHME HAUMHAET TaKKe
OKa3BIBATDH BIHAHHE KO3pOuuMEHT TepMoauddys3un macesl. PesyibTaThl ananusa, NpeACTABICHHbIE HA
pHC. 1-7, MOTYT C yNOBIETBOPHTEILHO TOUHOCTBIO ONMHKCHLIBATL AEHCTBUTENLHYIO KAPTHHY nEpeMeLe-
HHA BJIaTH PH HEGOJILLIOM H3MEHEHHH XAPAKTEPHCTHK Npolecca B 0BAACTH HE3aBHCHMEIX MEPEMEH-
HbIX B OZHOM HaCTHOM C/y4ae, H HX MOXHO HCNOJNb30BATL B KAa4eCTBE MEPBOrO NpPUONHXEHHA npH
OTHCAHHM NPOLECCA, NPOTEKAIOLIETO B APYTHX YCIOBHAX.



